Angular correlation and genuine- and conjugate-Fermi holes in two-electron atomic systems

Tokuei Sako¹

Laboratory of Physics, College of Science and Technology, Nihon University 7-24-1, Narashinodai, Funabashi, Chiba 274-8501, Japan

E-mail: sako@phys.ge.cst.nihon-u.ac.jp

Abstract. The ground and low-lying singly-excited states of He and He-like atomic ions have been studied by the full configuration method focusing on the angular correlation between the two electrons in the studied systems. The two-electron angle density distributions show distinct trends between the ground and excited states and between the singlet-triplet pair of states for different nuclear charge Z_n . The probability density distribution of the ground state has a strong dependence on the two-electron angle ϕ for small values of Z_n , such as $Z_n = 2$ and 3, which diminishes to zero as Z_n increases towards infinite. On the other hand, the probability density distributions of the singlet-triple pair of states of the (1s)(2p) configuration show a very weak dependence on ϕ for the small values of Z_n but a strong dependence for increasing Z_n , that represents peaks at $\phi = 0$, $\pm \pi$ and $\pm \pi/2$ for the singlet and triplet states, respectively. The origin of these angular dependences is rationalized on the basis of the structure of the genuine and conjugate Fermi holes.

¹ To whom correspondence should be addressed.